Faces with Light Makeup Are Better Recognized than Faces with Heavy Makeup

نویسندگان

  • Keiko Tagai
  • Hitomi Ohtaka
  • Hiroshi Nittono
چکیده

Many women wear facial makeup to accentuate their appeal and attractiveness. Makeup may vary from natural (light) to glamorous (heavy), depending of the context of interpersonal situations, an emphasis on femininity, and current societal makeup trends. This study examined how light makeup and heavy makeup influenced attractiveness ratings and facial recognition. In a rating task, 38 Japanese women assigned attractiveness ratings to 36 Japanese female faces with no makeup, light makeup, and heavy makeup (12 each). In a subsequent recognition task, the participants were presented with 36 old and 36 new faces. Results indicated that attractiveness was rated highest for the light makeup faces and lowest for the no makeup faces. In contrast, recognition performance was higher for the no makeup and light make up faces than for the heavy makeup faces. Faces with heavy makeup produced a higher rate of false recognition than did other faces, possibly because heavy makeup creates an impression of the style of makeup itself, rather than the individual wearing the makeup. The present study suggests that light makeup is preferable to heavy makeup in that light makeup does not interfere with individual recognition and gives beholders positive impressions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The light-makeup advantage in facial processing: Evidence from event-related potentials

The effects of makeup on attractiveness have been evaluated using mainly subjective measures. In this study, event-related brain potentials (ERPs) were recorded from a total of 45 Japanese women (n = 23 and n = 22 for Experiment 1 and 2, respectively) to examine the neural processing of faces with no makeup, light makeup, and heavy makeup. To have the participants look at each face carefully, a...

متن کامل

Makeup Like a Superstar: Deep Localized Makeup Transfer Network

In this paper, we propose a novel Deep Localized Makeup Transfer Network to automatically recommend the most suitable makeup for a female and synthesis the makeup on her face. Given a before-makeup face, her most suitable makeup is determined automatically. Then, both the beforemakeup and the reference faces are fed into the proposed Deep Transfer Network to generate the after-makeup face. Our ...

متن کامل

Computer-Suggested Facial Makeup

Finding the best makeup for a given human face is an art in its own right. Experienced makeup artists train for years to be skilled enough to propose a best-fit makeup for an individual. In this work we propose a system that automates this task. We acquired the appearance of 56 human faces, both without and with professional makeup. To this end, we use a controlled-light setup, which allows to ...

متن کامل

Semantic Reconstruction of Beauty and Makeup for Young Females: The Phenomenological Study

The concept of beauty is closely linked to gender in contemporary society; in this study, the concept of beauty was explored by the use of phenomenological techniques. For this purpose, an in-depth semi-structured interview was conducted among 35 young female students in Tehran. the sample of study was chosen by theoretical sampling model and the interviews were continued up to the point of  ga...

متن کامل

A PCA Based Approach for Quantitative Analysis of Shiny Skin

We propose shiny analysis framework accompanied with makeup deterioration using normalized facial images (MaVIC and the corresponding makeup-deteriorated data sets). These images are analyzed and reconstructed based on principal component analysis (PCA) and then the differential ones between the reconstruction images with different numbers of PCA components can be generated. The shiny Eigen-fac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016